The paper begins to define the mechanism that allows the protein to unfold and refold in a snap, changing its form to expose a peptide that attaches the virus to a cell and begins infection.
The researchers believe therapeutic drugs can use this mechanism to shut the virus down.
"This protein starts in a folded state and goes through a global transformation, refolding in a completely different state," said Onuchic, co-director of Rice's Center for Theoretical Biological Physics (CTBP). "But there's a small part in the center that evolution has conserved."
Without the pause, the refolding would be too quick for binding to take place.
Onuchic added, "We figured out there's a bunch of energy that makes the final state of HA2 much more stable than the initial state. But with the spring-loaded mechanism, most of the energy would already be wasted by the time it forms the coiled-coil and binds the cell and viral membranes."
Lead author and Rice postdoctoral researcher, Xingcheng Lin said, "The current research focused on the group that incorporates Thr59 and causes the H3N2 strain responsible for the Hong Kong flu."
Source: ANI
Image Source: Shutterstock
Follow us on