Advertisement

Breast Cancer Awareness month: Novel testing platform designed for breast cancer cells

According to researchers, one of the key features of breast cancer is that most patients survive if the disease stays local, but there is a greater than 70 per cent drop in survival if the cells have metastasized.

Researchers have developed a novel testing platform to evaluate how breast cancer cells respond to the recurrent stretching that occurs in the lungs during breathing.

Breast cancer is a threat to millions of women across the world. According to the World Health Organisation, there are about 1.38 million new cases and 458 000 deaths from breast cancer each year. In fact, this cancer is the most common cancer in women worldwide. Early detection is essential for a positive prognosis of the disease because it can prevent many deaths caused by this disease. On the occasion of Breast Cancer Awareness month this October, it is important to note that curative treatment is often no longer an option if the cancer is not detected early. It is also important to know how the cancer cells behave. The Breast Cancer Awareness Month is observed by countries across the world every October and the aim of this is to spread awareness about the disease.

Researchers from Purdue University in the US have developed a novel testing platform to evaluate how breast cancer cells respond to the recurrent stretching that occurs in the lungs during breathing. The technology is designed to better understand the effects that the local tissue has on metastatic breast cancer to study how metastases grow in new tissue, the study, published in the journal Advanced Functional Materials reported.

Survival rate goes down by 70 per cent if cells metastasize

According to researchers, one of the key features of breast cancer is that most patients survive if the disease stays local, but there is a greater than 70 per cent drop in survival if the cells have metastasized. However, once the cells leave the primary tumour, they are often no longer responsive to the drugs that initially worked for the patient.

Also Read

More News

Researchers wanted to develop a system that could help them better understand how the physiology of a new tissue space affected tumour cells upon invasion into the new organ. The researchers created a magnetically moving cell culturing system where the cancer cells can be grown in 3D on a suspended extracellular matrix protein that is abundant in early metastatic lung tissue in order to evaluate the impact of mechanical forces. They were able to incorporate the strain amplitude and rate of breathing in this tissue mimic. The researchers found that the cells quit dividing under these conditions.

Healthy organs utilize motion to resist metastatic colonization

Never before has the concept of motion been interrogated as a component of the tumour microenvironment. Researchers say that they now understand that healthy organs utilize motion to resist metastatic colonization. The development of this microactuator system will not only continue to yield increased biological understanding of metastasis, but it will also serve as a platform to better evaluate pharmacological inhibitors of the most lethal aspect of cancer progression.

According to the researchers, this is the first attempt to engineer a cell culture system that can apply mechanical forces on a suspended tissue. This system better mimics the physiological environment without using artificial substrates. Using this platform, they show that certain cancer cells slow down their proliferation due to the cyclic stretching of breathing.

(With inputs from IANS)

Total Wellness is now just a click away.

Follow us on